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Abstract. The minimal wave speed determinacy of traveling wave solution to a competitive three-species system

is investigated. Particularly, we are concerned about the speed at which a strong competitor species invades other

two residents via the diffusive Lotka-Volterra model. By considering the non-dimensional cooperative version of

the model, we apply the upper-lower solution method to study the traveling wave speed. New upper solutions
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by the speed of the corresponding linearized system. Our new results are compared with those in the previous

studies and some improvements are provided.
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1 Introduction

In an ecosystem, species that share the living space compete with each other seeking existence
and growth. Naturally, this depends on their competition characteristics and the validity of envi-
ronmental resources (Kolar & Lodge, 2001; Shea & Chesson, 2002; Sher & Hyatt, 1999). These
competitive species may coexist or some of them can not survive and die out (Amarasekare,
2003; Yu & Wilson, 2001). Competition of two species in the same area was extensively stud-
ied (Alhasanat & Ou, 2019a,b, 2020a,b; Holzer & Scheel, 2012; Huang, 2010; Li et al., 2005;
Lewis et al., 2002; Ma et al., 2020; Roques et al., 2015; Yue et al., 2020), where significant re-
sults and remarks were provided. Studies become complicated and results can not be easily
generalized for more than two interacted species. We consider here the interaction of three
species so that a new competitor is introduced into the living space of two species. We as-
sume that the resident species have different environmental resource preferences, but the new
one strongly competes with both of them, which indicates a biological invasion. In particular,
we are interested in the rate at which the invader species spreads into the resident species’
environment. This leads to a full understanding of the invasion behavior and control it. Pos-
sible coexistence for such interactions was investigated in literature based on the competition
characteristics (Chen et al., 2013; Kan-on & Mimura, 1998; Mimura & Tohma, 2015).

Mathematically, for time τ and location y, let ψ1(τ, y) be the density of an invader of two
resident species with densities ψ2(τ, y) and ψ3(τ, y). The species growth follows the following
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diffusive Lotka-Volterra model:

ψ1,τ = D1ψ1,yy + r1ψ1

(
1− ψ1

N1
−B12ψ2 −B13ψ3

)
,

ψ2,τ = D2ψ2,yy + r2ψ2

(
1−B21ψ1 −

ψ2

N2

)
,

ψ3,τ = D3ψ3,yy + r3ψ3

(
1−B31ψ1 −

ψ3

N3

)
,

(1)

where Ni is the carrying capacity which includes the intraspecific competition, Di is the diffusion
coefficient, and ri is the growth rate of species i, for i = 1, 2, 3; B1j and Bj1, for j = 2, 3, are
the interspecific competition coefficients of the first species with the other two species. The
non-dimensional cooperative version of the model (1) is derived by using the transformation

t = r1τ, x = y
√
r1/D1, u = ψ1/N1, v = 1− ψ2/N2, w = 1− ψ3/N3.

By defining, for i = 1, 2, 3 and j = 2, 3

di = Di/D1, αi = ri/r1, B1jNj = b1j , Bj1N1 = bj1,

the system of the new functions (u, v, w)(t, x) reads
ut = uxx + u(1− b12 − b13 − u+ b12v + b13w),

vt = d2vxx + α2(1− v)(b21u− v),

wt = d3wxx + α3(1− w)(b31u− w).

(2)

Our analysis will be carried out on the last model, where any result can be easily rewritten in
terms of the original model. It is clear that domain of (u, v, w) is inside the domain

χ = {(ϑ1, ϑ2, ϑ3)|(0, 0, 0) ≤ (ϑ1, ϑ2, ϑ3) ≤ (1, 1, 1)}.

As mentioned above, we assume that the invader species is a strong competitor compared with
the residents, that is, we let

b12 + b13 < 1, b21 > 1, b31 > 1. (3)

By computing the possible fixed point solutions of the kinetic system associated with the
system (2) inside χ, taking into account the condition (3), we get

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 1).

Furthermore, by standard linearization, (u, v, w) = (0, 0, 0) is unstable state and (u, v, w) =
(1, 1, 1) is stable. Originally, the former state means that there are no individuals of ψ1 but both
of ψ2 and ψ3 are at their maximum values N2 and N3, while the latter state means that ψ1 wins
the competition and both of ψ2 and ψ3 die out. The traveling wave solution in the form

(u, v, w)(t, x) = (U, V,W )(z), z = x− ct (4)

that connects (1, 1, 1) and (0, 0, 0), is used to study this invasion phenomenon and determine
the species spreading speed. Here, z is called the wave variable, c ≥ 0 is the wave speed, and
(U, V,W ) is called the wave profile. For existence of traveling waves and their properties for
three species competition models, we refer to the work of Chen et al. (2013, 2012); Guo et al.
(2015); Hou & Li (2017); Pan et al. (2021).
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The traveling wave system of the wave profile is found by substituting (4) into the system
(2), which leads to get

Lu[U, V,W ] := U ′′ + cU ′ + U(1− b12 − b13 − U + b12V + b13W ) = 0,
Lv[U, V ] := d2V

′′ + cV ′ + α2(1− V )(b21U − V ) = 0,
Lw[U,W ] := d3W

′′ + cW ′ + α3(1−W )(b31U −W ) = 0,
(5)

subject to

(U, V,W )(−∞) = (1, 1, 1) and (U, V,W )(+∞) = (0, 0, 0). (6)

By Guo et al. (2015); Pan et al. (2021), it was proved that there exists cmin ≥ 0 (called the
minimal wave speed) so that a monotone decreasing traveling wave solution to (5)-(6) exists
if and only if c ≥ cmin. Furthermore, it was shown that this minimal speed is the asymptotic
spreading speed, the speed at which the invader species u(t, x) eventually approaches the state
where it wins the competition. The formula of cmin is not valid in general. However, we should
have

cmin ≥ c0 =
√

1− b12 − b13

so that the wave profile is monotone. The formula of c0 is obtained by linearizing the system
(5) at the null fixed point. See the work of Pan et al. (2021) for more details. When cmin = c0,
we say that the minimal wave speed of the system (5) is linearly determined which leads to
giving an explicit formula of it. On the other hand, when cmin > c0, we say that it is nonlinearly
determined.

Guo et al. (2015) proved that the minimal wave speed is linearly determined when 0 < dj <
0, for j = 2, 3, and one of the following occurs:

bj1(b12 + b13) ≤ 1 (7)

or 
bj1(b12 + b13) > 1,

αj <
(2− dj)(1− b12 − b13)

bj1(b12 + b13)− 1
.

(8)

Pan et al. (2021) studied the minimal speed determinacy by using the upper-lower solution
method, and showed that it is linearly determined when 0 < dj < 0, for j = 2, 3, and one of the
following occurs:

−2(1− b12 − b13) + b12b21 + b13b31 ≤ 0 (9)

or 
b12 <

1− b13
2

, b13 <
1− b12

2
,

αj <
(2− dj)(1− b12 − b13)

2

b1jbj1 − (1− b12 − b13)
.

(10)

Moreover, Pan et al. (2021) provided a result for a larger domain of d2 and d3 so that the
minimal speed is linearly determined when

0 < dj < 2 +
αj

1− b12 − b13
,

αj − (dj − 2)(1− b12 − b13)

αjbj1
> max

{
dj − 2

2dj
,

b12 + b13
2(1− b12 − b13)

}
, for j = 2, 3.

(11)

The purpose of this work is to revisit the minimal wave speed determinacy by using the
upper-lower solution method. We successfully derive new sufficient conditions for the linear
speed determinacy by constructing suitable upper solution to the system (5). We compare our
results with that in (7)-(11), and provide some improvements.
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The rest of the paper is organized as follows. In Section 2, we present the solution behavior
near the null fixed point which plays a main role in constructing the required upper solutions.
Also, we introduce the upper-lower solution method. The main results are given in Section 3,
and conclusions are presented in Section 4.

2 Preliminaries

Let’s first introduce the derivation of the traveling wave solution behavior near the null fixed
point. Details can be found in the work of Pan et al. (2021). When c ≥ cmin, substitute
(U, V,W )(z) = (ζ1, ζ2, ζ3)e

−µz, for positive constants ζ1, ζ2, ζ3, and µ, into the traveling wave
system (5) and linearize the resulted system to get an algebraic system in terms of µ. This
system has a non-trivial solution if µ equals one of the following positive values

µ1 =
1

2

(
c−

√
c2 − 4(1− b12 − b13)

)
, µ2 =

1

2

(
c+

√
c2 − 4(1− b12 − b13)

)
µ3 =

1

2d2

(
c+

√
c2 + 4d2α2

)
, µ4 =

1

2d3

(
c+

√
c2 + 4d3α3

)
.

(12)

By substituting µk, k = 1, 2, 3, 4 into the linearized system, we can find values of ζm, m = 1, 2, 3
associated with each µk. Indeed the solution behavior near infinity is given byU

V
W

 (z) = C1

 1
ζ12
ζ13

 e−µ1z + C2

 1
ζ22
ζ23

 e−µ2z + C3

0
1
0

 e−µ3z + C4

0
0
1

 e−µ4z

for constants C1, C3, C4 > 0 or C1 = 0 with C2, C3, C4 > 0, where

ζ12 =
−α2b21

d2µ21 − cµ1 − α2
, ζ13 =

−α3b31
d3µ21 − cµ1 − α3

,

ζ22 =
−α2b21

d2µ22 − cµ2 − α2
, ζ23 =

−α3b31
d3µ22 − cµ2 − α3

.

Now, we give the definition of the upper solution to the system (5) following that was given
by Alhasanat & Ou (2020a) for the two-species model.

Definition 1. If (U, V ,W )(z) is continuous on (−∞,∞) and differentiable except at n fi-

nite number of points zq, q = 1, 2, 3, .., n, satisfying (U
′
, V

′
,W

′
)(z−q ) ≥ (U

′
, V

′
,W

′
)(z+q ) and

Lu[U, V ,W ](z) ≤ 0, Lv[U, V ](z) ≤ 0, Lw[U,W ](z) ≤ 0, for z ̸= zq, then (U, V ,W )(z) is an
upper solution to the problem (5).

The lower solution is defined similarly by reversing the inequalities in the above definition
of the upper solution. However, the conditions for the linear speed selection will be derived
by constructing only suitable upper solutions based on the following lemma (Pan et al., 2021,
Theorem 3.3).

Lemma 1. If there exists a monotone upper solution (U, V ,W )(z), with c = c0, to the problem
(5) so that 0 < U(−∞) ≤ 1 and U(+∞) = 0, then the minimal wave speed is linearly determined.

3 The linear determination of the minimal wave speed

When the problem parameters satisfy specific conditions, we derive the following results for
the linear determination of the minimal wave speed, cmin, of (5). This is done by constructing
suitable upper solutions that share the same behavior of the solution near the null fixed point
and applying Lemma 1. Domain of the diffusion coefficients will be considered as

0 < dj ≤ 2, for j = 2, 3. (13)
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We start first by driving a result that is independent of the growth rates α2 and α3 and then
we compare it with similar previous results.

Theorem 1. When (3) and (13) hold, the minimal speed of the system (5) is linearly determined
if the following conditions satisfy:

2(2− b12 − b13)(bj1 − 1) ≤ (1− b12 − b13)

(
1 + 4

√
bj1(bj1 − 1)

)
, j = 2, 3, (14)

b12(b21 − 1) + b13(b31 − 1) < (1− b12 − b13)

(
1

2
+
√
1− 1/bmax

)
, (15)

where bmax = max{b21, b31}.

Proof. To construct the desired upper solution to the system (5) when c = c0, define U(z) ∈ [0, 1]
as the monotone solution of

U
′
(z) = −µ1U(z)(1− U(z))

1
2 , U(−∞) = 1, U(+∞) = 0, (16)

and let

V (z) = min{1, b21U(z)} =

{
1, z ≤ z1,

b21U(z), z > z1,

W (z) = min{1, b31U(z)} =

{
1, z ≤ z2,

b31U(z), z > z2,

where 1 = b21U(z1), 1 = b31U(z2), and µ1 is defined in (12) with µ1(c0) = c0/2 =
√
1− b12 − b13.

Notice that V (z) and W (z) are continuous and differentiable except at z1 and z2, receptively,
with

V
′
(z−1 ) = 0 ≥ b21U

′
(z+1 ) = V

′
(z+1 )

and
W

′
(z−2 ) = 0 ≥ b31U

′
(z+2 ) =W

′
(z+2 ).

Hence, (U, V ,W )(z) satisfies the first inequality of Definition 1 for the non-differentiation points.
For the other inequalities, when z ̸= z1,2, we consider the case when b21 ≤ b31. This, with
monotonicity of U , implies that z1 ≤ z2. The proof of the other case is the same and omitted.

First of all, we compute

U
′′
= µ21U(1− U)− 1

2
µ21U

2
.

Now, the argument will split into the following three cases:
Case 1: When z < z1. The facts Lv[U, V ](z) = Lv[U, 1](z) = 0 and Lw[U,W ](z) = Lw[U, 1](z) =
0 are trivially satisfied. For the U -equation, we have

Lu[U, V ,W ] = U
′′
+ cU

′
+ U(1− U)

= U(1− U)

(
µ21 −

µ21U

2(1− U)
− cµ1

(1− U)
1
2

+ 1

)
:= U(1− U)f(U).

By substituting the values of c0 and µ1(c0), f(U) is re-defined as

f(U) = 2− b12 − b13 −
(1− b12 − b13)U

2(1− U)
− 2(1− b12 − b13)

(1− U)
1
2

,

for U ∈ (1/b21, 1] as z < z1. Trivial computations yield

f ′(U) =
−(1− b12 − b13)(1 + 2(1− U)

1
2 )

2(1− U)2
< 0.
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Hence,

sup
U∈(1/b21,1]

f(U) = f(1/b21)

=
2(b21 − 1)(2− b12 − b13)− (1− b12 − b13)(1 + 4

√
b21(b21 − 1))

2(b21 − 1)

≤ 0,

by condition (14), that is, Lu[U, V ,W ](z) ≤ 0 for all z < z1.
Case 2: When z1 < z < z2. We still have Lw[U, 1](z) = 0. For the V -equation, we compute

Lv[U, V ] = d2V
′′
+ cV

′
= d2b21µ

2
1U(1− U)− d2b21

2
µ21U

2 − cb21µ1U(1− U)
1
2 .

By substituting c = c0 and using −(1− U)
1
2 ≤ −(1− U), we get

Lv[U, V ] ≤ b21(1− b12 − b13)(d2 − 2)U(1− U)− d2b21
2

µ21U
2
.

From (13), we have Lv[U, V ](z) ≤ 0, for z1 < z < z2. Now,

Lu[U, V ,W ] = U
′′
+ cU

′
+ U(1− b12 − U + b12b21U)

= U(1− U)

(
µ21 −

µ21U

2(1− U)
− cµ1

(1− U)
1
2

− b12(1− b21U)

1− U
+ 1

)

= U(1− U)

(
f(U)− b12(1− b21U)

1− U

)
,

where f(U) has the same previous formula with U ∈ (1/b31, 1/b21) for this case. Indeed, the
last term in the above expression is negative inside this domain of U . Also,

sup
U∈(1/b31,1/b21)

f(U) = f(1/b31).

Similar to that of Case 1, condition (14) implies that Lu[U, V ,W ](z) ≤ 0 for this case.
Case 3: When z > z2. By the previous case, we have Lv[U, V ](z) ≤ 0. Similarly, by condition
(13), we can get Lw[U,W ](z) ≤ 0. For the U -equation, taking into account that U ∈ [0, 1/b31),
we have

Lu[U, V ,W ]

= U
′′
+ cU

′
+ U(1− b12 − b13 − U + b12b21U + b13b31U)

= U(1− U)

(
µ21 −

µ21U

2(1− U)
− cµ1

(1− U)
1
2

− b12(1− b21U)

1− U
− b13(1− b31U)

1− U
+ 1

)
= U(1− U)g(U),

where

g(U) = 2− b12 − b13 −
(1− b12 − b13)U

2(1− U)
− 2(1− b12 − b13)

(1− U)
1
2

− b12(1− b21U) + b13(1− b31U)

1− U
.

We compute

g′(U) =
1

(1− U)2

{
−(1− b12 − b13)

(
1

2
+ (1− U)

1
2

)
+ b12(b21 − 1) + b13(b31 − 1)

}
.

Since (1 − U)
1
2 > (1 − 1/b31)

1
2 , condition (15) implies that g′(U) ≤ 0. Hence, maximum value

of g(U) is g(0) = 0 and Lu[U, V ,W ](z) ≤ 0, for all z > z2.
Therefore, (U, V ,W )(z), with c = c0, is a monotone upper solution to the system (5) where

U(−∞) = 1 and U(+∞) = 0. By Lemma 1, we conclude that cmin is linearly determined.
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In view of the conditions (7)-(10), the inequalities of (8) and (10) have restrictions on the
growth rates αj , j = 2, 3. Since our result in Theorem 1 is independent of αj , we compare
it with the related conditions (7) and (9). Actually, none of these conditions covers the other
in general. To show the contribution of our result, we give a numeric example choices of the
parameters. Let b12 = 0.4, b13 = 0.3, b21 = 1.43, and b31 = 1.5. By computations, conditions
(7) and (9) are not satisfied while our new conditions (14)-(15) hold true.

Remark 1. As a concrete choice, we may give an explicit formula for the upper solution U(z)
in (16) as

U(z) =

{
1, z ≤ z0,
1− tanh2

(µ1

2 (z0 − z)
)
, z > z0.

It is clear that the function is continuous and differentiable on (−∞,+∞), and satisfies the
problem (16). Here, z0 is a shifting arbitrary constant.

Remark 2. In the condition (15), taking bmax is an advantage so that it covers similar forms
that are written in terms of b21 or b31. In proof of Theorem 1, the condition is used with
bmax = b31 as we consider the case b21 ≤ b31.

Theorem 2. When (3) and (13) hold, the minimal speed of the system (5) is linearly determined
if the following condition satisfies:

αj ≤
(2− dj)(1− b12 − b13)

bj1 − 1
, for j = 2, 3. (17)

Proof. Re-define 0 ≤ U(z), V (z),W (z) ≤ 1 as the following monotone, continuous, and differ-
entiable function

U(z) = V (z) =W (z) =
1

1 +Aeµ1z
,

where µ1 is defined in (12) and A is a constant. Similar to the proof of the above theorem, we
prove that (U, V ,W )(z) is an upper solution for the system (5) when c = c0. We substitute and

use U
′
= −µ1U(1− U), U

′′
= µ21U(1− U)(1− 2U), to get

Lu[U, V ,W ] = U
′′
+ cU

′
+ U(1− U − b12(1− U)− b13(1− U))

= U(1− U)
(
µ21(1− 2U)− cµ1 + 1− b12 − b13

)
= −2µ21U

2
(1− U)

≤ 0,

Lv[U, V ] = d2V
′′
+ cV

′
+ α2U(1− U)(b21 − 1)

= U(1− U)
(
d2µ

2
1(1− 2U)− cµ1 + α2(b21 − 1)

)
= U(1− U)

(
(d2 − 2)(1− b12 − b13)− 2d2µ

2
1U + α2(b21 − 1)

)
≤ 0,

and Lw[U,W ] ≤ 0 (similar to Lv). This completes the proof.

Even though the second part of the condition (8) covers the condition (17), as bj1(b12 +
b13) < bj1, the contribution of the above theorem is notable as we don’t require the restriction
bj1(b12 + b13) > 1 of the first part of (8). Indeed, if the last inequality is not satisfied for
both j = 2 and j = 3, the minimal speed is linearly determined by (7). But no results were
given previously if bj1(b12 + b13) > 1 for only one of j = 2 or j = 3. For example, when
d2 = d3 = 1, α2 = 0.3, α3 = 0.7, b12 = 0.3, b13 = 0.4, b21 = 1.8, and b31 = 1.4, we have
b21(b12 + b13) = 1.26 > 1 and b31(b12 + b13) = 0.98 < 1, that is, (7) and (8) are not satisfied (as
well as (9)), but our condition (17) implies the linear speed determinacy.
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Comparing with the condition (10), we don’t restrict the values of b12 and b13. In fact, that
restriction in the first part of (10) means

b1j < 1− b12 − b13, for j = 2, 3.

If this is not satisfied, then the condition (10) does not work, and our condition (17) covers the
second part of it. This leads to combining both of them in a single condition as follows (we may
use the above numeric choices as an example).

Corollary 1. When (3) and (13) hold, the minimal speed is linearly determined if the following
condition holds for j = 2, 3:

αj ≤
(2− dj)(1− b12 − b13)

Mjbj1 − 1
, where Mj = min{1, b1j/(1− b12 − b13)}.

Moreover, when (13) hold, the condition (11) implies that

αj ≤
(2− dj)(1− b12 − b13)

2

1
2bj1(b12 + b13)− (1− b12 − b13)

, for j = 2, 3,

which is covered by the condition in Corollary 1 when

Mj ≤
b12 + b13

2(1− b12 − b13)
, for any j = 2 or j = 3.

Theorems 3-4 below give the linear speed determination for a larger domain of α2, α3, or
both of them compared with that in Theorem 2.

Theorem 3. When (3) and (13) hold, the minimal speed of the system (5) is linearly determined
if the following conditions satisfy:

3b13 + 2b12 ≤ 2, (18)

α2 ≤
(2− d2)(1− b12 − b13)

b21 − 1
, (19)

α3 ≤
2(2− d3)(1− b12 − b13)

b31 − 1
. (20)

Proof. Use the same definitions of U and V in the proof of Theorem 2,

U(z) = V (z) =
1

1 +Aeµ1z
,

and let
W (z) = 1− (1− U(z))2,

where µ1 is defined in (12) and A is a constant. In addition to the derivatives of U given
previously, we present the following derivatives of W :

W
′
= −2µ1U(1− U)2 and W

′′
= 2µ21U(1− U)2(1− 3U).

The first derivative of the function W shows its monotonic. To prove that (U, V ,W )(z) is an
upper solution for the system (5) when c = c0, we substitute and use condition (18) to get

Lu[U, V ,W ] = U(1− U)(µ21(1− 2U)− cµ1 + 1− b12 − b13 + b13U)

= U
2
(1− U)(b13 − 2(1− b12 − b13))

= U
2
(1− U)(3b13 + 2b12 − 2)

≤ 0.
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Also, Lv[U, V ] ≤ 0 is valid by the proof of the previous theorem. Finally, from conditions (13)
and (20), we get

Lw[U,W ] = U(1− U)2(2d3µ
2
1(1− 3U)− 2cµ1 + α3(b31 − 2 + U))

≤ U(1− U)2(2(1− b12 − b13)(d3 − 2) + α3(b31 − 1))

≤ 0.

Lemma 1 completes the proof.

Analogously to the above proof, by switching the definitions of V and W or by re-defining
V =W = 1−(1−U)2, the linear speed selection can be verified for another two sets of conditions.
We present this in the following theorem.

Theorem 4. When (3) and (13) hold, the minimal speed of the system (5) is linearly determined
if one of the following sets of conditions satisfies:

(1)



2b13 + 3b12 ≤ 2,

α2 ≤
2(2− d2)(1− b12 − b13)

b21 − 1
,

α3 ≤
(2− d3)(1− b12 − b13)

b31 − 1
.

(2)



3b13 + 3b12 ≤ 2,

α2 ≤
2(2− d2)(1− b12 − b13)

b21 − 1
,

α3 ≤
2(2− d3)(1− b12 − b13)

b31 − 1
.

4 Conclusions

We considered the biological invasion of two resident species by a strong competitor via the three-
species competition model (1). The minimal speed determinacy of the traveling wave solution
was investigated. We have first transformed the model into the cooperative non-dimensional
model (2). Then, by applying the upper-lower solution method on (2) when (3) holds, we
derived new sufficient conditions so that the minimal speed of the traveling wave solution is
linearly determined. See Theorems 1-4.

A condition that is independent of the growth rates, i.e., for any positive α2 and α3, was
provided and compared with the previous related conditions (7) and (9). We also derived new
conditions based on the problem parameters, including the growth rates. By comparing these
conditions with that in previous works, we showed the contribution of our results and some
improvements were discussed. Some previous conditions on the linear speed determination were
combined with ours to derive a more general result. See Corollary 1.

The invader species in the model and the associated assumptions is assumed to be a strong
competitor and shall win the competition. Our results determine its spreading speed toward
the winning state based on the species’ growth, dispersal, and competition strength. For some
interactions, these factors can be estimated experimentally. Then the species spreading speed
can be found when one of the given conditions holds. Also, the formulas given in this study play
a significant role in the controlled biological interactions, e.g., agricultural pest control. Based
on the controlled parameters, one can expect the rate of spreading.

Actually, the upper-lower solution method plays a main role in deriving significant results
for such studies. This methodology can also be used to study multiple-species models. As there
is no sufficient and necessary condition for the minimal speed determinacy, new upper or lower
solutions may be constructed, taking care about their properties, or other methods may be used
to contribute on the problem.
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